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Microclimatic challenges in global change biology
KR I STEN A . POTTER * † , H . ARTHUR WOODS * and SYLVAIN PINCEBOURDE‡

*Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA, †School of Forestry, Northern Arizona

University, Flagstaff, AZ 86011, USA, ‡Institut de Recherche sur la Biologie de l’Insecte (IRBI, CNRS UMR 7261), Facult�e des

Sciences et Techniques, Universit�e Franc�ois Rabelais, Tours 37200, France

Abstract

Despite decades of work on climate change biology, the scientific community remains uncertain about where and

when most species distributions will respond to altered climates. A major barrier is the spatial mismatch between the

size of organisms and the scale at which climate data are collected and modeled. Using a meta-analysis of published

literature, we show that grid lengths in species distribution models are, on average, ca. 10 000-fold larger than the

animals they study, and ca. 1000-fold larger than the plants they study. And the gap is even worse than these ratios

indicate, as most work has focused on organisms that are significantly biased toward large size. This mismatch is

problematic because organisms do not experience climate on coarse scales. Rather, they live in microclimates, which

can be highly heterogeneous and strongly divergent from surrounding macroclimates. Bridging the spatial gap

should be a high priority for research and will require gathering climate data at finer scales, developing better meth-

ods for downscaling environmental data to microclimates, and improving our statistical understanding of variation

at finer scales. Interdisciplinary collaborations (including ecologists, engineers, climatologists, meteorologists, statisti-

cians, and geographers) will be key to bridging the gap, and ultimately to providing scientifically grounded data and

recommendations to conservation biologists and policy makers.
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One of the great challenges in modern biology is to pre-

dict how climate change will affect species (Schwenk

et al., 2009). In many locations, changing climates will

alter ecosystem functioning, reduce biodiversity, and

drive some fraction of species extinct. In the last

10 years, such impacts of climate change have been well

documented (Parmesan, 2006; Tylianakis et al., 2008;

Walther, 2010; Somero, 2012), and efforts have started

to shift from documenting impacts to predicting how

species, and their distributions, will respond to future

climates. Statistical models for predicting distributions –
called species distribution models (SDMs) – are now

widely used to relate species distribution data and envi-

ronmental or spatial characteristics of the known loca-

tions of individuals in a species (Elith & Leathwick,

2009). However, SDMs remain difficult to generalize

(Ara�ujo & Guisan, 2006; Heikkinen et al., 2006; Kearney

& Porter, 2009; Buckley et al., 2010), both from one

species to another and into novel environments. Here,

we explore an important issue related to the spatial

scale at which SDMs predict biological phenomena.

Species distribution models use climatic data arrayed

into grids having characteristic spatial scales. Although

most SDMs use grid sizes of one to several degrees of

latitude and longitude, corresponding to 1 to many

kilometers on a side, the largest terrestrial animals are

<10 m long, and the largest plants not much larger.

Moreover, these largest animals and plants are outliers –
the majority of animals are smaller than a few centime-

ters on a side (May, 1988). We find, in a meta-analysis of

published SDMs, that the mismatch (in units of log10 m)

between grid lengths and organism lengths is, for ani-

mals, 4.20-fold (range 1.12–7.04) and, for plants, 2.84

(range 0.41–7.24) (Fig. 1; see also Supporting Informa-

tion online). Using a linear scale, this corresponds to an

average mismatch of ca. 10 000-fold in animal studies

and ca. 1000-fold in plant studies. The relatively better

performance by plant studies reflects that studied plants

are larger than animals, rather than that plant studies

use finer grained environmental data (of course, our

analysis does not address the complexity of plant roots,

which are in a different environment altogether). Cur-

rent SDMs are therefore operating far from an ideal spa-

tial resolution.

Our analysis highlights a key problem for predicting

ecological effects of climate change: organisms do not
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sample environmental data at the spatial scales currently

used in SDMs. Rather, organisms live in microclimates,

which can be highly heterogeneous in space and time

(Bakken, 1992; Kearney & Porter, 2009; Sears et al., 2011),

and can differ strongly from surrounding macroclimates

(Bartholomew, 1966; Willmer, 1982; Oke, 1987; Geiger

et al., 2009). For example, the microclimates on the

leaves of a single plant can easily be 10 °C warmer or

colder than the surrounding air (Potter et al., 2009;

Pincebourde & Woods, 2012). In general, an organism’s

body size determines the microclimates it can access.

Indeed, smaller organisms integrate conditions over

smaller spatial (and temporal) scales. Moreover, shifts

in size, and in other properties like shape and reflec-

tance, affect the relative importance of different compo-

nents of heat budgets (Stevenson, 1985a, b). Thus,

despite sharing the same habitat, two organisms may

have markedly different body temperatures because

each filters its environment according to its own ther-

mal properties, shape, and size (Gates, 1980; Broitman
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Fig. 1 Lengths of grid cells from published species distribution models (SDMs) compared to the lengths of the animals and plants they

studied. See Supporting Information for methods of the literature search, the list of articles, and the data we extracted from them.

Colored dots indicate the body size of a species from one study; colored horizontal lines indicate a range of body sizes if the study used

multiple species. The corresponding grey dots and lines indicate the grid size (or range of sizes) of climate variables used in that study.

The black density plot is a spline fitted to data from May’s 1988 study [(May, 1988), fig. 6], which represents his estimate of the body

size distribution of all terrestrial animals. Density plots of the rest of the terrestrial data are shown at the bottom for comparison. The

two peaks in the grid-size density plots correspond to the commonly used grid scales of 1 and 10 km (e.g., these are the most common

resolutions exported from the WorldClim database). We compared pairs of distributions by bootstrapping a two-sample Kolmogorov–

Smirnov test (10 000 iterations), using samples (N = 50) drawn with replacement from the observed empirical distributions. The

distribution of terrestrial animal sizes was significantly shifted toward large body sizes compared to May’s predicted distribution

(mean P-value was 0.0028, and 99.0% of iterations had P < 0.05). The distributions of animal and plant grid sizes were not statistically

distinguishable (mean P-value = 0.31).
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et al., 2009; Sears et al., 2011). Current SDMs [except

some biophysical models, e.g., (Kearney et al., 2009)] do

not include such effects, meaning that they implicitly

consider all organisms within a grid cell to experience

the same coarse abiotic conditions.

Predicting how organisms will respond to climate

change will require radically reducing the mismatch

between the spatial [and temporal (Kearney et al.,

2012)] scales of models vs. organisms. This problem

must be addressed from both sides: there is no point in

using information on organisms that is much finer than

information on their climates, or vice versa. How fine is

fine enough? The question of optimal grid cell size (or

grain) has been debated since the birth of SDMs, with

some authors suggesting that finer scaled SDMs pro-

vide better predictions (McPherson et al., 2006; Austin

& Van Niel, 2011; Franklin et al., 2013) and others that

they do not (Guisan et al., 2007), in some cases making

them perform even worse. However, simulation studies

on the effects of grain size generally test spatial resolu-

tions down to ca. 100 m, which is still far from the ideal

resolution we propose. Ignoring practical constraints

(for the moment), we propose that the ideal spatial res-

olution is related to organismal body size and lies

between 1 and 10 times the length or height of the

organism.

Reaching the proposed optimal resolution will require

serious effort on several fronts. Current climate data are

coarse because it is difficult and expensive to sample

simultaneously at fine scales and large geographic

extents. Below, we highlight three approaches that will

help bridge the gap. These are not alternatives but com-

plementary, mutually reinforcing approaches that

should be pursued together if we are to bridge the gap

rapidly.

Advances in data collection

The first approach is the obvious one of sampling

organisms and climates at finer scales. To do so, we

need smaller, more robust sensors with enough power

and memory to collect data for long periods without

requiring much attention. One class of effective devices

would be small robots whose sizes, modes of move-

ment, and ‘home range sizes’ match those of the organ-

isms of interest. Robots that operate in swarms and

communicate among themselves are rapidly becoming

available for military and medical use (Baisch et al.,

2011; Wood et al., 2012), and they could be adapted to

scientific aims. Alternatively, small sensors could be

attached to live organisms, which would simulta-

neously solve the problems of directing robots to

behave like organisms and of obtaining high-resolution

information on organismal distributions. Although

autonomy would create new communication problems

of obtaining data from sensors, there are increasingly

sophisticated ways to create ad hoc wireless networks

for funneling data to central receivers (Johnson et al.,

2009; Rubenstein et al., 2012). Autonomy is key, as it

will free researchers from time-consuming efforts to get

sensors into place and keep them functioning.

It is obviously neither desirable nor possible to cover

the world with sensors. Rather, densely arrayed sensors

should be deployed, in structured designs, within focal

environments, which will allow us to better understand

in particular cases how microscale variation depends

on macroscale predictors. Until robots with realistic

behaviors are cheap and readily available, sampling

may be most practical in agricultural contexts, or other

relatively homogeneous environments. In those envi-

ronments, a small area of well-sampled microclimates

will more accurately describe the total variability

throughout the whole environment.

A second step would be to integrate these better sen-

sors into smaller scale operative temperature models

(Grant, 1990; Bakken, 1992; Angilletta, 2009). Operative

temperature models integrate complex microenviron-

mental conditions into realistic measures of body tem-

perature by replicating the biophysical filtering that

arises from the shape, size, and surface characteristics

of particular organisms. Although this approach has

been used successfully with organisms such as mussels

(Helmuth et al., 2010), sea stars (Pincebourde et al.,

2008), reptiles (Shine & Kearney, 2001), and a few large

insects (Harrison & Fewell, 1995; Kingsolver, 2000), it

has not been used with the small organisms positioned

on the left half of May’s distribution (Fig. 1). For very

small body sizes (<1–2 mm), bare thermocouples pro-

vide accurate measurements, as convection dominates

heat exchange.

Remote infrared (IR) sensing (Tomlinson et al., 2011) –
via satellites or portable IR cameras – will continue to

play an important role at medium to large spatial scales.

Remote sensing is less informative about physical envi-

ronments of large organisms, as they are more coupled

to air temperature and incoming solar radiation than to

surface temperature (except large animals such as

snakes that lie flat on the substrate). For small organ-

isms, satellites provide inadequate spatial resolution

(>60 m), and neither satellites nor ground-based cam-

eras can ‘see’ everywhere that small insects and other

metazoa could go in complex microhabitats – under

bark, in leaf litter, deep in flowers, etc. Although techni-

cal advances in remote sensing at fine scales would be

valuable, especially to estimate surface temperature

when parameterizing process-based models, it probably

will not substitute for more direct sensing of microcli-

matic variables.
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Advances in downscaling

A second approach is to ‘downscale’ climatic variables,

which refers to translating climatic variables across spa-

tial scales, e.g., from global circulation models to regio-

nal or local scales (Hewitson & Crane, 1996; Winkler

et al., 2011a, b). Downscaling has been developed inde-

pendently by meteorologists and by ecologists. For

meteorologists, the problems have been to predict

regional climates from the outputs of global circulation

models and, for ecologists, to predict microclimates or

body temperatures from regional and local information.

Clearly, local efforts (by ecologists) could be nested

within the coarser grained downscaling done by meteo-

rologists, but such cross-level downscaling remains rare

in studies of climate change (Fridley, 2009; Sears et al.,

2011). Progress will require joint efforts to downscale

climatic variables into the microclimates around organ-

isms, to scales <1 m.

Downscaling methods developed by meteorologists

fall into two categories: dynamic (or process based)

(Murphy, 1999) and empirical (or statistical) (Wilby

et al., 1998). Dynamic methods incorporate the physi-

cal processes (e.g., energy and mass fluxes) of the

focal system, and can involve a cascade of nested

models that run at different scales; the output of one

model becomes the input at the scale below. Empirical

approaches use statistical relationships between

observed local and global climates. Like the antago-

nism between mechanistic and statistical models of

species distribution (Buckley et al., 2010), process-

based models are computationally expensive while

empirical approaches suffer from the assumption that

future relationships between global and microclimates

will be like those observed now. The most productive

way forward likely will be to use both methods, as

they provide complementary insights. Indeed, the

recent emergence of statistical–dynamical approaches

has led to significant progress in the precision and

validity of climate downscaling methods at regional

scales (e.g., regional circulation models) (Bo�e et al.,

2006; Najac et al., 2011). Alternatively, the use of grid-

ded weather data sets, which are a source of dynamic

meteorological data over large spatial and temporal

scales, may provide directly downscaled information

(Mislan & Wethey, 2011). The spatial resolution of

such gridded data sets remains coarse (>12 km), but

can predict thermal stress events for intertidal organ-

isms (Mislan & Wethey, 2011) and should be

expanded to other biomes.

From a microclimate perspective, downscaling meth-

ods are still inadequate: they give resolutions of

ca. 30 m at best (Fridley, 2009), which is not fine

enough to describe variability relevant to small

organisms (Scherrer & K€orner, 2010). There has been,

however, a separate effort over the past 40 years, by

physiological and biophysical ecologists, to develop

mechanistic models for predicting animal body temper-

atures from local-scale environmental information (Por-

ter et al., 1973; Gates, 1980; Helmuth, 1998; Pincebourde

& Casas, 2006; Kearney & Porter, 2009; Saudreau et al.,

2013). In effect, this parallel work bridges the gap

between the local-scale climates and microclimates. It

remains, however, to establish the link between the out-

put from nested regional climate models and the local-

scale climates. The lack of such local-scale models has

led researchers to connect microclimatic models

directly with regional circulation model outputs (Kear-

ney & Porter, 2009), which is problematic because the

climatic variability generated by local environmental

topography is not considered. We suggest that a high

priority should be to develop local-scale climatic mod-

els within this biophysical framework to further inte-

grate microclimatic biophysical models with regional

or global circulation models.

The development of local-scale climatic models is not

straightforward. Constraints include potentially exorbi-

tant computational expenses, the problem of obtaining

other fine-scaled environmental information (e.g., mic-

rotopography, coordinates in 3D space of tree leaves)

that can be coupled to broad-scale climate data, and the

difficulty of generalizing model predictions to new

landscapes and climates. The development of hybrid

models (semimechanistic and semistatistical) may be

the best way to trade-off between the methods’ advan-

tages and disadvantages.

Fine-scaled predictions can be obtained by specifying

how broader scale climates interact with finer scaled

measures of environmental topography, thermal prop-

erties of substrates, and other local abiotic and biotic

factors (Helmuth, 1998; Sears et al., 2011). The heat bud-

get of organisms is strongly influenced by numerous

factors, including air temperature, solar radiation, wind

speed, humidity, and precipitation (Gates, 1980), which

can all be variable at small spatial scales depending on

local and microtopography. All these factors therefore

need to be downscaled based on topographical infor-

mation. For example, we can use simple geometrical

relationships to compute the amount of radiation (the

main heat source in the environment) received by each

‘pixel’ of a surface from zenith angle and azimuth of

the sun, and slope and azimuth of the substrate

(McCullough & Porter, 1971). Using the spatial distri-

bution of angles for a given landscape, we can then esti-

mate the landscape thermal heterogeneity at scales

relevant to a small organism. For surfaces with hetero-

geneous microtopography and multiple elements (e.g.,

bare rock, bark, leaves), the spatial heterogeneity in

© 2013 John Wiley & Sons Ltd, Global Change Biology, 19, 2932–2939
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radiative heat absorption can be estimated from the

statistical distribution of slope and absorbance values

(Huey et al., 1977). Other components of the heat bud-

get, namely, surface evapotranspiration and heat loss

via convection, can be estimated from surface wetness

and ambient air temperature. Such hybrid models

allow us to estimate statistical distributions of microcli-

mates at the scale of small organisms, even when

spatially explicit information on environmental archi-

tecture is unavailable.

Advances in multiscale spatial statistics

A third approach is to develop better statistical descrip-

tions of spatial patterns of microclimates. There is now

an enormous literature on using spatial statistics to

characterize environmental variation and landscape

structure (Bell et al., 1993; Garrigues et al., 2006; de

Knegt et al., 2008), and a diverse set of techniques is

available for describing the scale dependence of spatial

data, including wavelets, spatial regression, and frac-

tals (Sun et al., 2006; Florindo et al., 2012). These tech-

niques have less often been applied to problems with

characteristic scales of a few centimeters or less

(Baraloto & Couteron, 2010; Meager et al., 2011), sug-

gesting that the statistical tools exist and we simply

need finer scale data to which they can be applied.

However, the statistical problem can also be asked in

broader ways. For example, are there general rules to

describe how the spatial distributions of physical fac-

tors in microhabitats scale with organismal body size?

Do small or large organisms have more thermal hetero-

geneity available to them? Can we predict spatial pat-

terns of variation at fine scales from those observed at
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Fig. 2 Scale-dependent thermal variation. Small and large organisms may experience local thermal variation differently, even when

they share the same habitat. To illustrate this effect, we took thermal images at different heights above a single patch of grass and forbs

along the banks of the Loire River, France (numbers associated with each image represent the length of that side). The images differ

both in total area sampled (their spatial extent) and in the real-world size represented by each pixel; the close-up images have smaller

extents and higher spatial resolutions (i.e., smaller pixel size). In the close-up images, the distributions of pixel temperatures (bottom

left panel) are shifted toward higher temperatures. A more spatially explicit way to examine temperature distributions is with semivari-

ograms (bottom center panel), which show thermal variance as a function of distance between pixels (lag). The variograms indicate

that, within each image, smaller lags contain lower variance. In other words, nearby pixels are more similar to each other than they are

to distant pixels. Across images, however, the close-up images show higher total variance. Relating these patterns to body size depends

on recognizing that smaller organisms will usually sample smaller total extents but will do so at finer spatial resolutions. The latter

effect corresponds roughly to changing the pixel size of the image, and smaller organisms therefore sample smaller pixels (as in the

upper left image) (Emerson et al., 1999; Al-Hamdan et al., 2010). By contrast, at a fixed spatial resolution, sampling smaller extents will

give lower total variance. Thus, two offsetting processes influence the available variation–less variation associated with smaller total

extents but greater variation associated with sampling at finer scales. The net outcome for an organism, both in the patches we sampled

and more generally for any nested set of measurements like this, will depend on the relative influence of those two effects. Although

our sample is only a single series (N = 1), and the quantitative patterns may not be general, this example reinforces our recommenda-

tion that the biological community needs to systematically search for and characterize patterns across biomes (see also Fig. 3).
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larger scales? Which physical processes generate pat-

terns of variation at different spatial scales? Because

different energy- and mass-transport processes contrib-

ute to variation in scale-dependent ways, and because

organisms also move around their environments in

scale-dependent ways, we suspect that there will be no

simple answer. The most productive outcome would be

to identify systematic changes, if any, in patterns of

spatial variation during the transition(s) from large to

small scales (Fig. 2).

The statistical problem is magnified by scale-dependent

changes in environmental rugosity, which is a measure of

roughness defined as the draped surface area divided by

the surface area projected onto a flat plane. Rugosity usu-

ally increases at finer scales – i.e., an ant foraging in a field

perceives it to be more rugose than does an ungulate graz-

ing on the same field. For fine-scale phenomena, high rug-

osity is problematic because spatial statistics are designed

primarily for 2D data (i.e., their locations are specified

using latitude and longitude). Moreover, adding a third

axis for specifying position is unsatisfying because often

there will be no straight-line path from one point in 3D

space to another. Finally, high rugosity at fine scales limits

the utility and quality of remotely sensed data, especially

if there are crevices or pockets not visible to the sensor.

In summary, we do not know how most organisms

will respond to future climates, and a fundamental

source of uncertainty is the complexity of the physical

and biotic filters between macroclimates and the micro-

climates where organisms live. Taking microclimates

seriously will raise other important problems. For

example, most animals have complex life cycles, with

each life stage living in a distinct microclimate. In com-

plex life cycles, which microclimate is most important?

Changes in microclimate may strongly affect some life

stages but not others (Kingsolver et al., 2011). Animals

also grow, which alters the set of microenvironments

available to them (Porter & Tracy, 1983). Finally, in

communities, interacting species often spend most of

their lives in different microclimates, which implies

that understanding the effects of climate change on eco-

logical processes will require understanding its effects

on entire suites of microclimates. Despite this complex-

ity, the three research directions advocated above

promise rapid advances. Importantly, although each

alone has significant weaknesses, the approaches are

mutually reinforcing and should therefore all be pur-

sued (Fig. 3). For example, advances in data collection

at fine scales will provide key data for developing and

validating the robust spatial statistics needed for

connecting macro- to microscales. It is urgent that we

resolve these problems: macroclimates are changing

faster than the worst-case scenarios predicted just a few

years ago (Oldenborgh et al., 2009), with essentially

unknown effects at the smallest scales.
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